Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Materials (Basel) ; 16(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2259165

RESUMO

Pollutants and infectious diseases can spread through air with airborne droplets and aerosols. A respiratory mask can decrease the amount of pollutants we inhale and it can protect us from airborne diseases. With the onset of the COVID-19 pandemic, masks became an everyday item used by a lot of people around the world. As most of them are for a single use, the amount of non-recyclable waste increased dramatically. The plastic from which the masks are made pollutes the environment with various chemicals and microplastic. Here, we investigated the time- and size-dependent filtration efficiency (FE) of aerosols in the range of 25.9 to 685.4 nm of five different natural materials whose FE was enhanced using electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) fibres. A scanning electron microscope (SEM) was used to determine the morphology and structure of the natural materials as well as the thickness of the PVDF fibres, while the phase of the electrospun fibres was determined by Raman spectroscopy. A thin layer of the electrospun PVDF fibres with the same grammage was sandwiched between two sheets of natural materials, and their FE increased up to 80%. By varying the grammature of the electrospun polymer, we tuned the FE of cotton from 82.6 to 99.9%. Thus, through the optimization of the grammage of the electrospun polymer, the amount of plastic used in the process can be minimized, while achieving sufficiently high FE.

2.
J Memb Sci ; 672: 121473, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2232719

RESUMO

The COVID-19 pandemic has caused serious social and public health problems. In the field of personal protection, the facial masks can prevent infectious respiratory diseases, safeguard human health, and promote public safety. Herein, we focused on preparing a core filter layer for masks using electrospun polyvinyl butyral/apocynum venetum extract nanofibrous membranes (PVB/AVE NMs), with durable interception efficiency and antibacterial properties. In the spinning solution, AVE acted as a salt to improve electrical conductivity, and achieve long-lasting interception efficiency with adjustable pore size. It also played the role of an antibacterial agent in PVB/AVE NMs to achieve win-win effects. The hydrophobicity of PVB-AVE-6% was 120.9° whereas its filterability reached 98.3% when the pressure drop resistance was 142 Pa. PVB-AVE-6% exhibited intriguing properties with great antibacterial rates of 99.38% and 98.96% against S. aureus and E. coli, respectively. After a prolonged usability test of 8 h, the filtration efficiency of the PVB/AVE masks remained stable at over 97.7%. Furthermore, the antibacterial rates of the PVB/AVE masks on S. aureus and E. coli were 96.87% and 96.20% respectively, after using for 2 d. These results indicate that PVB/AVE NMs improve the protective performance of ordinary disposable masks, which has certain application in air filtration.

3.
Materials Today Communications ; 32, 2022.
Artigo em Inglês | Web of Science | ID: covidwho-2042051

RESUMO

In this work, Polyvinylidene fluoride (PVDF), a ferroelectric polymer thin film, was prepared by the solution casting method. The growth of polymer films was optimized to achieve the ferroelectric beta-phase with PVDF and, most importantly, ferroelectric domains with dominant planar polarization components. The ferroelectric po-larization of these polymers is known to hold surface charges with/without field. The polymer is expected to interact with microbial organisms whose physiological metabolism depends on surface charges. The current COVID-19 pandemic has motivated us to carry out a fundamental study of the interaction between the polari-zation of the ferroelectric polymers and microbes. The antimicrobial studies were performed, making these polymer films interact with bacterial, viral, and fungal growth environments. Electroded PVDF films were kept in contact with bacterial colonies, and a dc-voltage of 1.5 V was applied across the electrodes. The film was sub-jected to 1.5 V and kept in contact with the culture before the growth initiation, and the microbial growth was hindered entirely. It never occurred either beneath or over the surface of the films. Thus, in the presence of the electric field, the microbial growth was inhibited, even in a conducive environment.

4.
Exp Therm Fluid Sci ; 141: 110777, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2031281

RESUMO

Recently, a fluidic facemask concept was proposed to mitigate the transmission of virus-laden aerosol and droplet infections, such as SARS-CoV-2 (COVID-19). This paper describes an experimental investigation of the first practical fluidic facemask prototype, or "Air-Screen". It employs a small, high-aspect-ratio, crossflow fan mounted on the visor of a filter-covered cap to produce a rectangular air jet, or screen, in front of the wearer's face. The entire assembly weighs less than 200 g. Qualitative flow visualization experiments using a mannequin clearly illustrated the Air-Screen's ability to effectively block airborne droplets (∼100 µm) from the wearer's face. Quantitative experiments to simulate droplets produced during sneezing or a wet cough (∼102 µm) were propelled (via a transmitter) at an average velocity of 50 m/s at 1 m from the mannequin or a target. The Air-Screen blocked 62% of all droplets with a diameter of less than 150 µm. With an Air-Screen active on the transmitter, 99% of all droplets were blocked. When both mannequin and transmitter Air-Screens were active, 99.8% of all droplets were blocked. A mathematical model, based on a weakly-advected jet in a crossflow, was employed to gain greater insight into the experimental results. This investigation highlighted the remarkable blocking effect of the Air-Screen and serves as a basis for a more detailed and comprehensive experimental evaluation.

5.
IEEE Sensors Journal ; : 1-1, 2022.
Artigo em Inglês | Scopus | ID: covidwho-2018960

RESUMO

The key to fight against a global pandemic such as COVID-19 is to have low-cost, reliable and fast response diagnostic tools. Electronic biosensors are preferred because of their ease of integration into current centralized health care networks and integration with modern point-of-care testing (POCT) devices. Printed electronic sensors provide a sensitive and reliable diagnostic platform to aid in controlling transmissible diseases. In this work, we demonstrate a fully printed capacitive biosensor. The sensor uses coplanar electrodes, coupled with capture antibodies immobilized on microporous Polyvinylidene-fluoride (PVDF) film to detect the SARS-CoV-2 spike protein in spiked buffer solutions. Antibody immobilization on PVDF surface is confirmed with confocal fluorescent imaging microscopy. Gold nanoparticle (GNP) tagged detection antibodies are also introduced to provide increased sensitivity. The gold nanoparticles provide a reflectance layer which leads to increased capacitance. This increased capacitance can be measured directly and has demonstrated the ability to screen for spiked samples with statistical significance. This fully printed capacitive immunoassay has the potential to be used as a transmissible disease screening and vaccine efficacy assessment tool for resource-limited areas. IEEE

6.
Appl Mater Today ; 27: 101473, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1777973

RESUMO

The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 µm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.

7.
ACS Applied Polymer Materials ; 2021.
Artigo em Inglês | Scopus | ID: covidwho-1768763

RESUMO

The demand for air filtration products has increased significantly with the aggravation of air pollution and the pandemic of coronavirus disease (COVID-19). It is urgently needed to develop an air filtration membrane that exhibits lasting filtration performance and antibacterial activity. Herein, we report a large-scale blow spinning technique to produce polyvinylidene fluoride (PVDF) nanofiber membranes for highly efficient air mechanical filtration and its antibacterial modification by adding the silver nanoparticles (AgNPs). The PVDF nanofiber membrane with an area density of only 1.0 g/m2 exhibits the highest filtration efficiency of 98.63% for the particle with a size of 0.3 μm. After eliminating static electricity, there is almost no reduction in the filtration efficiency of particulate matter with a size larger than 1 μm and only 4.69% decrease in the particulate matter with a size of 0.5 μm. Hence, the PVDF nanofiber membrane with nanostructures for air filtration works mainly by the means of mechanical filtration. To inhibit the survival or growth of the intercepted bacteria on the membrane, the PVDF/AgNPs nanofiber membrane was fabricated by adding AgNPs to PVDF nanofibers, which exhibits the strongest antibacterial activity of more than 99% and an excellent filtration efficiency similar to that without adding AgNPs. The nanofiber membrane with antibacterial activity is expected to extend the service or storage time or be reused without loss of filtration performance. Additionally, large-scale production of nanofiber filtration membranes has been realized using a multi-needle blow spinning machine. © 2022 American Chemical Society.

8.
Polymers (Basel) ; 14(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1686921

RESUMO

This study is focused on the characterization and investigation of polyvinylidene fluoride (PVDF) nanofibers from the point of view of macro- and nanometer level. The fibers were produced using electrostatic spinning process in air. Two types of fibers were produced since the collector speed (300 rpm and 2000 rpm) differed as the only one processing parameter. Differences in fiber's properties were studied by scanning electron microscopy (SEM) with cross-sections observation utilizing focused ion beam (FIB). The phase composition was determined by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. The crystallinity was determined by differential scanning calorimetry (DSC), and chemical analysis of fiber's surfaces and bonding states were studied using X-ray photoelectron spectroscopy (XPS). Other methods, such as atomic force microscopy (AFM) and piezoelectric force microscopy (PFM), were employed to describe morphology and piezoelectric response of single fiber, respectively. Moreover, the wetting behavior (hydrophobicity or hydrophilicity) was also studied. It was found that collector speed significantly affects fibers alignment and wettability (directionally ordered fibers produced at 2000 rpm almost super-hydrophobic in comparison with disordered fibers spun at 300 rpm with hydrophilic behavior) as properties at macrolevel. However, it was confirmed that these differences at the macrolevel are closely connected and originate from nanolevel attributes. The study of single individual fibers revealed some protrusions on the fiber's surface, and fibers spun at 300 rpm had a core-shell design, while fibers spun at 2000 rpm were hollow.

9.
Nanomaterials (Basel) ; 12(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1686905

RESUMO

Utilizing the triboelectric effect of the fibrous structure, a very low cost and straightforward sensor or an energy harvester can be obtained. A device of this kind can be flexible and, moreover, it can exhibit a better output performance than a device based on the piezoelectric effect. This study is concerned with comparing the properties of triboelectric devices prepared from polyvinylidene fluoride (PVDF) fibers, polyamide 6 (PA) fibers, and fibrous structures consisting of a combination of these two materials. Four types of fibrous structures were prepared, and then their potential for use in triboelectric devices was tested. Namely, individual fibrous mats of (i) PVDF and (ii) PA fibers, and their combination-(iii) PVDF and PA fibers intertwined together. Finally, the fourth kind was (iv), a stratified three-layer structure, where the middle layer from PVDF and PA intertwined fibers was covered by PVDF fibrous layer on one side and by PA fibrous layer on the opposite side. Dielectric properties were examined and the triboelectric response was investigated in a simple triboelectric nanogenerator (TENG) of individual or combined (i-iv) fibrous structures. The highest triboelectric output voltage was observed for the stratified three-layer structure (the structure of iv type) consisting of PVDF and PA individual and intertwined fibrous layers. This TENG generated 3.5 V at peak of amplitude at 6 Hz of excitation frequency and was most sensitive at the excitation signal. The second highest triboelectric response was observed for the individual PVDF fibrous mat, generating 2.8 V at peak at the same excitation frequency. The uniqueness of this work lies in the dielectric and triboelectric evaluation of the fibrous structures, where the materials PA and PVDF were electrospun simultaneously with two needles and thus created a fibrous composite. The structures showed a more effective triboelectric response compared to the fibrous structure electrospun by one needle.

10.
Colloids Surf A Physicochem Eng Asp ; 640: 128418, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1654243

RESUMO

The significant public health concerns related to particulate matter (PM) air pollutants and the airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have led to considerable interest in high-performance air filtration membranes. Highly ferroelectric polyvinylidene fluoride (PVDF) nanofiber (NF) filter membranes are successfully fabricated via electrospinning for high-performance low-cost air filtration. Spectroscopic and ferro-/piezoelectric analyses of PVDF NF show that a thinner PVDF NF typically forms a ferroelectric ß phase with a confinement effect. A 70-nm PVDF NF membrane exhibits the highest fraction of ß phase (87%) and the largest polarization behavior from piezoresponse force microscopy. An ultrathin 70-nm PVDF NF membrane exhibits a high PM0.3 filtration efficiency of 97.40% with a low pressure drop of 51 Pa at an air flow of 5.3 cm/s owing to the synergetic combination of the slip effect and ferroelectric dipole interaction. Additionally, the 70-nm PVDF NF membrane shows excellent thermal and chemical stabilities with negligible filtration performance degradation (air filtration efficiency of 95.99% and 87.90% and pressure drop of 55 and 65 Pa, respectively) after 24 h of heating at 120 °C and 1 h immersion in isopropanol.

11.
Biochem Biophys Rep ; 28: 101170, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1509587

RESUMO

SARS-CoV-2 has become a big challenge for the scientific community worldwide. SARS-CoV-2 enters into the host cell by the spike protein binding with an ACE2 receptor present on the host cell. Developing safe and effective inhibitor appears an urgent need to interrupt the binding of SARS-CoV-2 spike protein with ACE2 receptor in order to reduce the SARS-CoV-2 infection. We have examined the penta-peptide ATN-161 as potential inhibitor of ACE2 and SARS-CoV-2 spike protein binding, where ATN-161 has been commercially approved for the safety and possess high affinity and specificity towards the receptor binding domain (RBD) of S1 subunit in SARS-CoV-2 spike protein. We carried out experiments and confirmed these phenomena that the virus bindings were indeed minimized. ATN-161 peptide can be used as an inhibitor of protein-protein interaction (PPI) stands as a crucial interaction in biological systems. The molecular docking finding suggests that the binding energy of the ACE2-spike protein complex is reduced in the presence of ATN-161. Protein-protein docking binding energy (-40.50 kcal/mol) of the spike glycoprotein toward the human ACE2 and binding of ATN-161 at their binding interface reduced the biding energy (-26.25 kcal/mol). The finding of this study suggests that ATN-161 peptide can mask the RBD of the spike protein and be considered as a neutralizing candidate by binding with the ACE2 receptor. Peptide-based masking of spike S1 protein (RBD) and its neutralization is a highly promising strategy to prevent virus penetration into the host cell. Thus masking of the RBD leads to the loss of receptor recognition property which can reduce the chance of infection host cells.

12.
ACS Appl Mater Interfaces ; 13(17): 20606-20621, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1201860

RESUMO

Disposable surgical face masks are usually used by medical/nurse staff but the current Covid-19 pandemic has caused their massive use by many people. Being worn closely attached to the people's face, they are continuously subjected to routine movements, i.e., facial expressions, breathing, and talking. These motional forces represent an unusual source of wasted mechanical energy that can be rather harvested by electromechanical transducers and exploited to power mask-integrated sensors. Typically, piezoelectric and triboelectric nanogenerators are exploited to this aim; however, most of the current devices are too thick or wide, not really conformable, and affected by humidity, which make them hardly embeddable in a mask, in contact with skin. Different from recent attempts to fabricate smart energy-harvesting cloth masks, in this work, a wearable energy harvester is rather enclosed in the mask and can be reused and not disposed. The device is a metal-free hybrid piezoelectric nanogenerator (hPENG) based on soft biocompatible materials. In particular, poly(vinylidene fluoride) (PVDF) membranes in the pure form and with a biobased plasticizer (cardanol oil, CA) are electrospun onto a laser-ablated polyimide flexible substrate attached on a skin-conformable elastomeric blend of poly(dimethylsiloxane) (PDMS) and Ecoflex. The multilayer structure of the device harnesses the piezoelectricity of the PVDF nanofibers and the friction triboelectric effects. The ultrasensitive mechanoelectrical transduction properties of the composite device are determined by the strong electrostatic behavior of the membranes and the plasticization effect of cardanol. In addition, encapsulation based on PVDF, PDMS, CA, and parylene C is used, allowing the hPENG to exhibit optimal reliability and resistance against the wet and warm atmosphere around the face mask. The proposed device reveals potential applications for the future development of smart masks with coupled energy-harvesting devices, allowing to use them not only for anti-infective protection but also to supply sensors or active antibacterial/viral devices.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Máscaras , Conservação de Recursos Energéticos/métodos , Humanos
13.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: covidwho-952653

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

14.
Sep Purif Technol ; 250: 116886, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: covidwho-108995

RESUMO

The World Health Organization declared the novel coronavirus (COVID-19) outbreak as a pandemic on March 12, 2020. Within four months since outbreak in December 2019, over 2.6 million people have been infected across 210 countries around the globe with over 180,000 deaths. COVID-19 has a size of 60-140 nm with mean size of 100 nm (i.e. nano-aerosol). The virus can be airborne by attaching to human secretion (fine particles, nasal/saliva droplets) of infected person or suspended fine particulates in air. While NIOSH has standardized N95, N99 and N100 respirators set at 300-nm aerosol, to-date there is no filter standards, nor special filter technologies, tailored for capturing airborne viruses and 100-nm nano-aerosols. The latter also are present in high number concentration in atmospheric pollutants. This study addresses developing novel charged PVDF nanofiber filter technology to effectively capture the fast-spreading, deadly airborne coronavirus, especially COVID-19, with our target aerosol size set at 100 nm (nano-aerosol), and not 300 nm. The virus and its attached aerosol were simulated by sodium chloride aerosols, 50-500 nm, generated from sub-micron aerosol generator. PVDF nanofibers, which were uniform in diameter, straight and bead-free, were produced with average fiber diameters 84, 191, 349 and 525 nm, respectively, with excellent morphology. The fibers were subsequently electrostatically charged by corona discharge. The amounts of charged fibers in a filter were increased to achieve high efficiency of 90% for the virus filter but the electrical interference between neighbouring fibers resulted in progressively marginal increase in efficiency yet much higher pressure drop across the filter. The quality factor which measured the efficiency-to-pressure-drop kept decreasing. By redistributing the fibers in the filter into several modules with lower fiber packing density, with each module separated by a permeable, electrical-insulator material, the electrical interference between neighboring charged fibers was reduced, if not fully mitigated. Also, the additional scrim materials introduced macropores into the filter together with lower fiber packing density in each module both further reduced the airflow resistance. With this approach, the quality factor can maintain relatively constant with increasing fiber amounts to achieve high filter efficiency. The optimal amounts of fiber in each module depended on the diameter of fibers in the module. Small fiber diameter that has already high performance required small amounts of fibers per module. In contrast, large diameter fiber required larger amounts of fibers per module to compensate for the poorer performance provided it did not incur significantly additional pressure drop. This approach was applied to develop four new nanofiber filters tailored for capturing 100-nm airborne COVID-19 to achieve over 90% efficiency with pressure drop not to exceed 30 Pa (3.1 mm water). One filter developed meeting the 90% efficiency has ultralow pressure drop of only 18 Pa (1.9 mm water) while another filter meeting the 30 Pa limit has high efficiency reaching 94%. These optimized filters based on rigorous engineering approach provide the badly needed technology for protecting the general public from the deadly airborne COVID-19 and other viruses, as well as nano-aerosols from air pollution which lead to undesirable chronic diseases.

15.
Sep Purif Technol ; 245: 116887, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: covidwho-102262

RESUMO

The novel coronavirus (COVID-19), average size 100 nm, can be aerosolized by cough, sneeze, speech and breath of infected persons. The airborne carrier for the COVID-19 can be tiny droplets and particulates from infected person, fine suspended mists (humidity) in air, or ambient aerosols in air. To-date, unfortunately there are no test standards for nano-aerosols (≤100 nm). A goal in our study is to develop air filters (e.g. respirator, facemask, ventilator, medical breathing filter/system) with 90% capture on 100-nm airborne COVID-19 with pressure drop of less than 30 Pa (3.1 mm water). There are two challenges. First, this airborne bio-nanoaerosol (combined virus and carrier) is amorphous unlike cubic NaCl crystals. Second, unlike standard laboratory tests on NaCl and test oil (DOP) droplets, these polydispersed aerosols all challenge the filter simultaneously and they are of different sizes and can interact among themselves complicating the filtration process. For the first time, we have studied these two effects using ambient aerosols (simulating the bio-nanoaerosols of coronavirus plus carrier of different shapes and sizes) to challenge electrostatically charged multilayer/multimodule nanofiber filters. This problem is fundamentally complicated due to mechanical and electrostatic interactions among aerosols of different sizes with induced charges of different magnitudes. The test filters were arranged in 2, 4, and 6 multiple-modules stack-up with each module having 0.765 g/m2 of charged PVDF nanofibers (mean diameter 525 ± 191 nm). This configuration minimized electrical interference among neighboring charged nanofibers and reduced flow resistance in the filter. For ambient aerosol size>80 nm (applicable to the smallest COVID-19), the electrostatic effect contributes 100-180% more efficiency to the existing mechanical efficiency (due to diffusion and interception) depending on the number of modules in the filter. By stacking-up modules to increase fiber basis weight in the filter, a 6-layer charged nanofiber filter achieved 88%, 88% and 96% filtration efficiency for, respectively, 55-nm, 100-nm and 300-nm ambient aerosol. This is very close to attaining our set goal of 90%-efficiency on the 100-nm ambient aerosol. The pressure drop for the 6-layer nanofiber filter was only 26 Pa (2.65 mm water column) which was below our limit of 30 Pa (3.1 mm water). For the test multi-module filters, a high 'quality factor' (efficiency-to-pressure-drop ratio) of about 0.1 to 0.13 Pa-1 can be consistently maintained, which was far better than conventional filters. Using the same PVDF 6-layer charged nanofiber filter, laboratory tests results using monodispersed NaCl aerosols of 50, 100, and 300 nm yielded filtration efficiency, respectively, 92%, 94% and 98% (qualified for 'N98 standard') with same pressure drop of 26 Pa. The 2-6% discrepancy in efficiency for the NaCl aerosols was primarily attributed to the absence of interaction among aerosols of different sizes using monodispersed NaCl aerosols in the laboratory. This discrepancy can be further reduced with increasing number of modules in the filter and for larger 300-nm aerosol. The 6-layer charged nanofiber filter was qualified as a 'N98 respirator' (98% capture efficiency for 300-nm NaCl aerosols) but with pressure drop of only 2.65-mm water which was 1/10 below conventional N95 with 25-mm (exhaling) to 35-mm (inhaling) water column! The 6-layer charged PVDF nanofiber filter provides good personal protection against airborne COVID-19 virus and nano-aerosols from pollution based on the N98 standard, yet it is at least 10X more breathable than a conventional N95 respirator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA